The Critical Group of a Line Graph
نویسنده
چکیده
The critical group of a graph is a finite abelian group whose order is the number of spanning forests of the graph. This paper provides three basic structural results on the critical group of a line graph. • The first deals with connected graphs containing no cut-edge. Here the number of independent cycles in the graph, which is known to bound the number of generators for the critical group of the graph, is shown also to bound the number of generators for the critical group of its line graph. • The second gives, for each prime p, a constraint on the p-primary structure of the critical group, based on the largest power of p dividing all sums of degrees of two adjacent vertices. • The third deals with connected graphs whose line graph is regular. Here known results relating the number of spanning trees of the graph and of its line graph are sharpened to exact sequences which relate their critical groups. The first two results interact extremely well with the third. For example, they imply that in a regular nonbipartite graph, the critical group of the graph and that of its line graph determine each other uniquely in a simple fashion.
منابع مشابه
Line completion number of grid graph Pn × Pm
The concept of super line graph was introduced in the year 1995 by Bagga, Beineke and Varma. Given a graph with at least r edges, the super line graph of index r, Lr(G), has as its vertices the sets of r-edges of G, with two adjacent if there is an edge in one set adjacent to an edge in the other set. The line completion number lc(G) of a graph G is the least positive integer r for which Lr(G) ...
متن کاملLine graphs associated to the maximal graph
Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...
متن کاملA Novel Molecular Descriptor Derived from Weighted Line Graph
The Bertz indices, derived by counting the number of connecting edges of line graphs of a molecule were used in deriving the QSPR models for the physicochemical properties of alkanes. The inability of these indices to identify the hetero centre in a chemical compound restricted their applications to hydrocarbons only. In the present work, a novel molecular descriptor has been derived from the w...
متن کاملMORE ON EDGE HYPER WIENER INDEX OF GRAPHS
Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge set E(G). The (first) edge-hyper Wiener index of the graph G is defined as: $$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$ where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). In thi...
متن کاملThe spectrum of the hyper-star graphs and their line graphs
Let n 1 be an integer. The hypercube Qn is the graph whose vertex set isf0;1gn, where two n-tuples are adjacent if they differ in precisely one coordinate. This graph has many applications in Computer sciences and other area of sciences. Inthe graph Qn, the layer Lk is the set of vertices with exactly k 1’s, namely, vertices ofweight k, 1 k n. The hyper-star graph B(n;k) is...
متن کاملZagreb Indices and Coindices of Total Graph, Semi-Total Point Graph and Semi-Total Line Graph of Subdivision Graphs
Expressions for the Zagreb indices and coindices of the total graph, semi-total point graph and of semi-total line graph of subdivision graphs in terms of the parameters of the parent graph are obtained, thus generalizing earlier existing results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009